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Background

« Mathematical epidemiology is at its centenary

« The very early models (Ross, 1915; Kermack
and McKendrick, 1927; Reed and Frost, 1920s)
tended to be concerned with exploring
hypotheses

« E.g. K& Kshowed that an epidemic could end

due to acquisition of immunity rather than the
attenuation of the pathogen as had been
previously suggested




History (a bit subjective)

« 1950s-70s: Focus on simple models, often
including randomness and mathematical
analysis thereof

« 1980s-90s: Differential-equation based
models (no randomness) stratified by age
primarily for childhood infections

« 2000s: Random computationally intensive
models aiming for high ‘realism’

 Current directions: Much more focus on
models that can be fitted to data -
randomness but computationally ‘cheap’
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Talk outline

* | will present short outlines of several
different project / papers

« None of these is specifically about TB, but the
modelling / statistical methodology should
carry over

« The equations behind this are complex (and
mainly not included) but the concepts are
naturall
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Statistical framework

‘'somewhat Bayesian'’
Put distributions on parameters
Sample from these using MCMC

Propagate this uncertainty forward in a
transmission-dynamic model

Pros: Unified conceptual framework; copes
well with ‘small data’;

Cons: Subjectivity; algorithmic difficulty
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Ebola - historic outbreaks

- Ebola outbreaks are highly variable

« Rather than try to use differential equations, |
considered a branching-process mode|

 Also, waiting times between outbreaks and
the variability in case fatality rates is variable
and inferable from historic data
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Ebola outbreaks pre-2014

Together with fitted model based on a branching process
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Waiting times between outbreaks versus a ‘memoryless’ distribution
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Weak transmission

« Near criticality (R, = 1) epidemics behave
differently from far from it

« TB in some contexts may be close to criticality

« Joint work with Malwina Luczak, Graham
Brightwell, Svarte Janson.
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2014 Ebola in Sierra Leone

Compared to LSHTM model
The post-control period exhibits fast decay but a long time to extinction
The standard explanation for this is varying R, - is there another possibility?
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Theoretical results for the SIS model

These show a decoupling of expected prevalence and extinction probability
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Theoretical results for SIR model

These show strong initial-condition dependence
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MANCHESTER Emergence of influenza
pandemics

« Ebola outbreaks exhibited the memoryless
property

« Does pandemic influenza? We considered a
Bayesian model selection problem

 Fitinter-pandemic times to either an
exponential (memoryless) or Gamma (history-
dependent) distribution and calculated the
probability of each hypotheses - this is
possible in Bayesian inference, not a
misinterpretation of a p-value!

« Work with Ed Hill and Mike Tildesley
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The model fits well (scenario C strong prior)

Memoryless
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We can use these to predict next century’'s pandemics



MANCHESTER
1824

Households

« Many populations are split into easily
identifiable, well connected small sub-units

* In mathematical work, these are customarily
called households, but the methodology is
general

 Here, the idea is to calculate all outcome
probabilities by brute force

« Work with Tim Kinyanjui, Josh Ross, Stefan
Guettel, Jackie Cassell, Jo Middleton
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Scabies in care homes

Sarcoptes scabiei is an ectoparasite that infests human skin, where
it burrows and lays eggs causing intense itching and scratching. We
capture its dynamics in a residential care home of size

N = S5 + FE + I using the stochastic SEI model:

(S,E,I) - (S—1,E+1,I)atrate A\ST,
(S,E,I) = (S,E—1,I + 1) atratevFE.

We make the modelling choice

leaving us with paramters

0 = (o, 5,7). (10)
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Scabies in care homes

The data' takes the formy = (Ng, Cy,Ty)"_,, representing care

CL:]_’

home size, number of cases at treatment and time between first
infection and treatment.

N 57 18 57 29 35 26 92
C 4 5 9 3 4 15 2
T (days) | 61 172 161 368 123 123 4

Then the likelihood takes the form

L(y|0) = | [ vd.e™ @M uin .

Jr Hewitt, KA, Nalabanda, A and Cassell, J A (2014) Scabies outbreaks in residential care homes:
factors associated with late recognition, burden and impact. A mixed methods study in England.
Epidemiology and Infection. ISSN 0950-2688
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costs of delay

Economic cost QALY cost
1 300
Y4
Y4
Y4
0.9 ’
B V4
V4
250 ’
’
0.8 ’
V4
V4
’
— L V4
<07 200 ’
w ¢
a— V4
3 ’
0.6 7 4
o 3 ’
) S 150 4
= - ’
o
S << ’
Los g ,
5 ’
c 4
2 V
G 0.4 100 4 ’
% 4 ,/
= 4
o ’ g
V4 , ’
0.3 ’
Y4 . ’ s
- Y4
50 ’ Pl
’, - -
0.2 ’ - -
, 4 _ - -
pA -
2 - - -
01 - —I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51

Time in weeks Time in weeks



Q) /

The L 4.2. Safety of lvermectin

Barkwell and Shields [8] reported 172 deaths in a population of size 210
over a 36 month period, and 15 subsequent deaths over 6 months in a sub-
population of 47 who had received ivermectin treatment, as well as 10 deaths
in the remaining population of 163 over that 6 months period. They reported
deaths for each month in the two sub-populations over the six months following
ivermectin treatment. Barkwell and Shields performed two statistical tests on
these data: chi-squared and Fisher’s exact. Of these, Fisher’s exact test is more
accurate for small populations and answers the following question: if two
groups, one of size 163 and one of size 47, are formed by picking individuals
from the total population of 210 (with 25 deaths) uniformly at random, then
what is the probability p of the pattern of deaths observed, or one with more
deaths in the population of size 47. This test gives p < 0.0001 when applied to
the data.
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e Plausible levels of
heterogeneity in B&S data:
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Conclusion

IVERMECTIN MAY WELL BE SAFE



Real shedding data

For influenza, Ebola and norovirus:
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Compartmental model

State-space models where an individual is in a state X (¢) attime ¢
are common in epidemiology:

" Y2 Tm—2 TYm—1

The ‘shedding’ data comes from experimentally infected
individuals. We suppose that the measured log titre (amount of live
virus) is proportional to the expected infectiousness in the linear
model above, E[\(X (¢))]. We can solve the Markov chain to get
derivatives with respect to parameters so these are available as well
as the likelihood.




Influenza posterior
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Influenza uncertainty quantitification

This allows us to propagate uncertainty forward for
population-level predictions

Consider a DDE model for delayed in-
terventions; if ¢ = 1 these always
work (top plot) and if e = 0 they only
work before the infectious period (bot-
tom plot):
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THANKS FOR YOUR TIME!

Papers, collaborators, contact details etc:

http://personalpages.manchester.ac.uk/staff/thomas.house/




